If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-42X+0.8=0
a = 1; b = -42; c = +0.8;
Δ = b2-4ac
Δ = -422-4·1·0.8
Δ = 1760.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-\sqrt{1760.8}}{2*1}=\frac{42-\sqrt{1760.8}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+\sqrt{1760.8}}{2*1}=\frac{42+\sqrt{1760.8}}{2} $
| 8(4-w)=2w | | 4y^2-17y+18=0 | | X²+2x+20=100 | | 8x+12=-96 | | (b-7)(b-1)=0 | | 4y+5=-2y | | 90+3x+3x+3x=180 | | 9=8(2x+1) | | -n=9(n-10) | | 31(x−12)=2x+1 | | x/5+3=x+-1 | | 8(1+5x)-30=13+5x | | 3-5y/4=-2-4y/3 | | 2(6x+3)=14 | | 8�+8=x+88= 7�+4x+47 | | –70=8q–14 | | 20r=–5(13r–17) | | -2x-2=-52 | | 5t+16=5t+-16 | | -5x-95-12x=177 | | (-)3/u+6=-5/2u+12+4 | | p=4 | | -5t+5=8-5t | | 96/2s=3s | | -3/u+6=-5/2u+12+4 | | -5x-95-2x=177 | | 5t+5=8+5t | | 4(2x+3)=7-2x | | 3.8(k+7)=45.6 | | 2x²-9=3x | | b−942=–556 | | 5x+6-2x+5=8x-7+x |